Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Micromachines (Basel) ; 15(3)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38542547

ABSTRACT

This manuscript presents a comprehensive study on the assembly of microchips using fluidic self-assembly (FSA) technology, with a focus on optimizing the spacing between binding sites to improve yield and assembly. Through a series of experiments, we explored the assembly of microchips on substrates with varying binding site spacings, revealing the impact of spacing on the rate of undesired chip assembly across multiple sites. Our findings indicate a significant reduction in incorrect assembly rates as the spacing increases beyond a critical threshold of 140 µm. This study delves into the mechanics of chip alignment within the fluid medium, hypothesizing that the extent of the alloy's grip on the chips at different spacings influences assembly outcomes. By analyzing cases of undesired assembly, we identified the relationship between binding site spacing and the area of chip contact, demonstrating a decrease in the combined left and right areas of chips as the spacing increases. The results highlight a critical spacing threshold, which, when optimized, could significantly enhance the efficiency and precision of microchip assembly processes using FSA technology. This research contributes to the field of microcomponent assembly, offering insights into achieving higher integration densities and precision in applications, such as microLED displays and augmented reality (AR) devices.

2.
Arch Pharm Res ; 47(1): 66-81, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38147203

ABSTRACT

The post-transcriptional processing of N6-methyladenosine (m6A)-modified mRNA by YTH domain-containing family protein 1 (YTHDF1) plays a crucial role in the regulation of gene expression. Although YTHDF1 expression is frequently upregulated in breast cancer, the regulatory mechanisms for this remain unclear. In this study, we examined the role of peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1) in regulating YTHDF1 stability in breast cancer cells. The WW domain of PIN1 interacted with YTHDF1 in a phosphorylation-dependent manner. Additionally, PIN1 overexpression increased YTHDF1 stability by preventing ubiquitin-dependent proteasomal degradation. Furthermore, using the MS2-tagged RNA pull-down assay, we identified Aurora kinase A (AURKA) mRNA as a bona fide substrate of YTHDF1. PIN1-mediated YTHDF1 stabilization increased the stability of AURKA mRNA in an m6A-dependent manner. Furthermore, YTHDF1 knockout reduced AURKA protein expression levels, resulting in anticancer effects in breast cancer cells, including decreased cell proliferation, cell cycle arrest at the G0/G1 phase, apoptotic cell death, and decreased spheroid formation. The anticancer effects induced by YTHDF1 knockout were reversed by AURKA overexpression. Similarly, the knockout of PIN1 produced comparable anticancer effects to those observed in YTHDF1-knockout cells, and these effects were reversed upon overexpression of YTHDF1. In conclusion, the findings of our study suggest that increased YTHDF1 stability induced by PIN1 promotes breast tumorigenesis via the stabilization of AURKA mRNA. Targeting the PIN1/YTHDF1 axis may represent a novel therapeutic strategy for breast cancer.


Subject(s)
Aurora Kinase A , Breast Neoplasms , Humans , Female , NIMA-Interacting Peptidylprolyl Isomerase/genetics , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , Aurora Kinase A/genetics , Aurora Kinase A/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Phosphorylation , Carcinogenesis/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
3.
Bioorg Chem ; 143: 107061, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38154386

ABSTRACT

Overexpression of transglutaminase 2 (TGase 2; TG2) has been implicated in the progression of renal cell carcinoma (RCC) through the inactivation of p53 by forming a protein complex. Because most p53 in RCC has no mutations, apoptosis can be increased by inhibiting the binding between TG2 and p53 to increase the stability of p53. In the present study, a novel TG2 inhibitor was discovered by investigating the structure of 1H-benzo[d]imidazole-4,7-dione as a simpler chemotype based on the amino-1,4-benzoquinone moiety of streptonigrin, a previously reported inhibitor. Through structure-activity relationship (SAR) studies, compound 8j (MD102) was discovered as a potent TG2 inhibitor with an IC50 value of 0.35 µM, p53 stabilization effect and anticancer effects in the ACHN and Caki-1 RCC cell lines with sulforhodamine B (SRB) GI50 values of 2.15 µM and 1.98 µM, respectively. The binding property of compound 8j (MD102) with TG2 was confirmed to be reversible in a competitive enzyme assay, and the binding interaction was expected to be formed at the ß-sandwich domain, a p53 binding site, in the SPR binding assay with mutant proteins. The mode of binding of compound 8j (MD102) to the ß-sandwich domain of TG2 was analyzed by molecular docking using the crystal structure of the active conformation of human TG2. Compound 8j (MD102) induced a decrease in the downstream signaling of p-AKT and p-mTOR through the stabilization of p53 by TG2 inhibition, resulting in tumor cell apoptosis. In a xenograft animal model using ACHN cancer cells, oral administration and intraperitoneal injection of compound 8j (MD102) showed an inhibitory effect on tumor growth, confirming increased levels of p53 and decreased levels of Ki-67 in tumor tissues through immunohistochemical (IHC) tissue staining. These results indicated that the inhibition of TG2 by compound 8j (MD102) could enhance p53 stabilization, thereby ultimately showing anticancer effects in RCC. Compound 8j (MD102), a novel TG2 inhibitor, can be further applied for the development of an anticancer candidate drug targeting RCC.


Subject(s)
Antineoplastic Agents , Carcinoma, Renal Cell , Kidney Neoplasms , Protein Glutamine gamma Glutamyltransferase 2 , Animals , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Imidazoles/therapeutic use , Kidney Neoplasms/drug therapy , Kidney Neoplasms/pathology , Molecular Docking Simulation , Protein Glutamine gamma Glutamyltransferase 2/antagonists & inhibitors , Transglutaminases/antagonists & inhibitors , Transglutaminases/metabolism , Tumor Suppressor Protein p53/drug effects , Tumor Suppressor Protein p53/metabolism
4.
Cell Oncol (Dordr) ; 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38112979

ABSTRACT

PURPOSE: Nuclear accumulation of YAP/TAZ promotes tumorigenesis in several cancers, including melanoma. Although the mechanisms underlying the nuclear retention of YAP are known, those underlying the retention of TAZ remain unclear. Our study investigates a novel acetylation/deacetylation switch in TAZ, governing its subcellular localization in melanoma tumorigenesis. METHODS: Immunoprecipitation/Western blot assessed TAZ protein interactions and acetylation. SIRT5 activity was quantified with enzyme-linked immunosorbent assay. Immunofluorescence indicated TAZ nuclear localization. TEAD transcriptional activity was measured through luciferase reporter assays. ChIP detected TAZ binding to the CTGF promoter. Transwell and wound healing assays quantified melanoma cell invasiveness and migration. Metastasis was evaluated using a mouse model via tail vein injections. Clinical relevance was explored via immunohistochemical staining of patient tumors. RESULTS: CBP facilitated TAZ acetylation at K54 in response to epidermal growth factor stimulation, while SIRT5 mediated deacetylation. Acetylation correlated with phosphorylation, regulating TAZ's binding with LATS2 or TEAD. TAZ K54 acetylation enhanced its S89 phosphorylation, promoting cytosolic retention via LATS2 interaction. SIRT5-mediated deacetylation enhanced TAZ-TEAD interaction and nuclear retention. Chromatin IP showed SIRT5-deacetylated TAZ recruited to CTGF promoter, boosting transcriptional activity. In a mouse model, SIRT5 overexpression induced melanoma metastasis to lung tissue following the injection of B16F10 melanocytes via the tail vein, and this effect was prevented by verteporfin treatment. CONCLUSIONS: Our study revealed a novel mechanism of TAZ nuclear retention regulated by SIRT5-mediated K54 deacetylation and demonstrated the significance of TAZ deacetylation in CTGF expression. This study highlights the potential implications of the SIRT5/TAZ axis for treating metastatic melanoma.

5.
Viruses ; 15(8)2023 07 31.
Article in English | MEDLINE | ID: mdl-37632010

ABSTRACT

African swine fever (ASF), a viral disease caused by the African swine fever virus (ASFV), is associated with high mortality rates in domestic pigs and wild boars. ASF has been spreading since its discovery in wild boars in Korea in October 2019. Genomic analyses have provided insights into the genetic diversity of the ASFV isolated from various regions, enabling a better understanding of the virus origin and transmission patterns. We conducted a genome analysis to evaluate the diversity and mutations of ASFV spreading among wild boars in Korea during 2019-2022. We compared the genomes of ASFV strains isolated from Korean wild boars and publicly available ASFV genomes. Genomic analysis revealed several single-nucleotide polymorphisms within multigene families (MGFs) 360-1La and 360-4L in Korean ASFV. MGF 360-1La and 360-4L variations were not observed in other ASFV strains, including those of genotype II. Finally, we partially analyzed MGFs 360-1La and 360-4L in ASFV-positive samples between 2019 and 2022, confirming the geographical distribution of the variants. Our findings can help identify new genetic markers for epidemiological ASFV analysis and provide essential information for effective disease management.


Subject(s)
African Swine Fever Virus , African Swine Fever , Animals , Swine , African Swine Fever Virus/genetics , African Swine Fever/epidemiology , Prevalence , Republic of Korea/epidemiology , Sus scrofa
6.
Mol Cell ; 83(12): 2020-2034.e6, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37295429

ABSTRACT

Biomolecular condensation underlies the biogenesis of an expanding array of membraneless assemblies, including stress granules (SGs), which form under a variety of cellular stresses. Advances have been made in understanding the molecular grammar of a few scaffold proteins that make up these phases, but how the partitioning of hundreds of SG proteins is regulated remains largely unresolved. While investigating the rules that govern the condensation of ataxin-2, an SG protein implicated in neurodegenerative disease, we unexpectedly identified a short 14 aa sequence that acts as a condensation switch and is conserved across the eukaryote lineage. We identify poly(A)-binding proteins as unconventional RNA-dependent chaperones that control this regulatory switch. Our results uncover a hierarchy of cis and trans interactions that fine-tune ataxin-2 condensation and reveal an unexpected molecular function for ancient poly(A)-binding proteins as regulators of biomolecular condensate proteins. These findings may inspire approaches to therapeutically target aberrant phases in disease.


Subject(s)
Ataxin-2 , Neurodegenerative Diseases , Humans , Ataxin-2/genetics , Poly(A)-Binding Protein I , Neurodegenerative Diseases/metabolism , Biomolecular Condensates
7.
Oncogene ; 42(13): 1010-1023, 2023 03.
Article in English | MEDLINE | ID: mdl-36755057

ABSTRACT

Methyltransferase-like 3 (METTL3) is the catalytic subunit of the N6-adenosine methyltransferase complex responsible for N6-methyladenosine (m6A) modification of mRNA in mammalian cells. Although METTL3 expression is increased in several cancers, the regulatory mechanisms are unclear. We explored the regulatory roles of peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1) in METTL3 stability and m6A modification of mRNA. PIN1 interacted with METTL3 and prevented its ubiquitin-dependent proteasomal and lysosomal degradation. It stabilized METTL3, which increased the m6A modification of transcriptional coactivator with PDZ-binding motif (TAZ) and epidermal growth factor receptor (EGFR) mRNA, resulting in their efficient translation. PIN1 knockout altered the distribution of TAZ and EGFR mRNA from polysomes into monosomes. Inhibition of MEK1/2 kinases and PIN1 destabilized METTL3, which impeded breast cancer cell proliferation and induced cell cycle arrest at the G0/G1 phases. METTL3 knockout reduced PIN1 overexpression-induced colony formation in MCF7 cells and enhanced tumor growth in 4T1 cells in an orthotopic mouse model. In clinical settings, METTL3 expression significantly increased with tumor progression and was positively correlated with PIN1 expression in breast cancer tissues. Thus, PIN1 plays a regulatory role in mRNA translation, and the PIN1/METTL3 axis may be an alternative therapeutic target in breast cancer.


Subject(s)
Cell Transformation, Neoplastic , Methyltransferases , Animals , Mice , Cell Transformation, Neoplastic/pathology , ErbB Receptors/genetics , Mammals/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , NIMA-Interacting Peptidylprolyl Isomerase/genetics , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , RNA, Messenger
8.
Cells ; 13(1)2023 12 28.
Article in English | MEDLINE | ID: mdl-38201270

ABSTRACT

Reversible N6-adenosine methylation of mRNA, referred to as m6A modification, has emerged as an important regulator of post-transcriptional RNA processing. Numerous studies have highlighted its crucial role in the pathogenesis of diverse diseases, particularly cancer. Post-translational modifications of m6A-related proteins play a fundamental role in regulating the m6A methylome, thereby influencing the fate of m6A-methylated RNA. A comprehensive understanding of the mechanisms that regulate m6A-related proteins and the factors contributing to the specificity of m6A deposition has the potential to unveil novel therapeutic strategies for cancer treatment. This review provides an in-depth overview of our current knowledge of post-translational modifications of m6A-related proteins, associated signaling pathways, and the mechanisms that drive the specificity of m6A modifications. Additionally, we explored the role of m6A-dependent mechanisms in the progression of various human cancers. Together, this review summarizes the mechanisms underlying the regulation of the m6A methylome to provide insight into its potential as a novel therapeutic strategy for the treatment of cancer.


Subject(s)
Epigenome , Neoplasms , Humans , Adenosine , Knowledge , Neoplasms/genetics , Neoplasms/therapy , Protein Processing, Post-Translational
9.
Cell Rep ; 41(4): 111508, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36288714

ABSTRACT

Mutations in the ataxin-2 gene (ATXN2) cause the neurodegenerative disorders amyotrophic lateral sclerosis (ALS) and spinocerebellar ataxia type 2 (SCA2). A therapeutic strategy using antisense oligonucleotides targeting ATXN2 has entered clinical trial in humans. Additional ways to decrease ataxin-2 levels could lead to cheaper or less invasive therapies and elucidate how ataxin-2 is normally regulated. Here, we perform a genome-wide fluorescence-activated cell sorting (FACS)-based CRISPR-Cas9 screen in human cells and identify genes encoding components of the lysosomal vacuolar ATPase (v-ATPase) as modifiers of endogenous ataxin-2 protein levels. Multiple FDA-approved small molecule v-ATPase inhibitors lower ataxin-2 protein levels in mouse and human neurons, and oral administration of at least one of these drugs-etidronate-is sufficient to decrease ataxin-2 in the brains of mice. Together, we propose v-ATPase as a drug target for ALS and SCA2 and demonstrate the value of FACS-based screens in identifying genetic-and potentially druggable-modifiers of human disease proteins.


Subject(s)
Amyotrophic Lateral Sclerosis , Spinocerebellar Ataxias , Vacuolar Proton-Translocating ATPases , Animals , Humans , Mice , Ataxin-2/genetics , Ataxin-2/metabolism , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Vacuolar Proton-Translocating ATPases/metabolism , Pharmaceutical Preparations , Etidronic Acid , Spinocerebellar Ataxias/drug therapy , Spinocerebellar Ataxias/genetics , Oligonucleotides, Antisense/genetics
10.
Cell Rep ; 41(4): 111505, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36288715

ABSTRACT

Gene-based therapeutic strategies to lower ataxin-2 levels are emerging for the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and spinocerebellar ataxia type 2 (SCA2). Additional strategies to lower levels of ataxin-2 could be beneficial. Here, we perform a genome-wide arrayed small interfering RNA (siRNA) screen in human cells and identify RTN4R, the gene encoding the RTN4/NoGo-Receptor, as a potent modifier of ataxin-2 levels. RTN4R knockdown, or treatment with a peptide inhibitor, is sufficient to lower ataxin-2 protein levels in mouse and human neurons in vitro, and Rtn4r knockout mice have reduced ataxin-2 levels in vivo. We provide evidence that ataxin-2 shares a role with the RTN4/NoGo-Receptor in limiting axonal regeneration. Reduction of either protein increases axonal regrowth following axotomy. These data define the RTN4/NoGo-Receptor as a novel therapeutic target for ALS and SCA2 and implicate the targeting of ataxin-2 as a potential treatment following nerve injury.


Subject(s)
Amyotrophic Lateral Sclerosis , Spinocerebellar Ataxias , Animals , Mice , Humans , Ataxin-2/genetics , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , RNA, Small Interfering , Nogo Receptors/metabolism , Spinocerebellar Ataxias/genetics , Mice, Knockout , Peptides/metabolism , Nogo Proteins/genetics , Nogo Proteins/metabolism
11.
PLoS One ; 17(9): e0272434, 2022.
Article in English | MEDLINE | ID: mdl-36070255

ABSTRACT

Spending money on one's self, whether to solve a problem, fulfill a need, or increase enjoyment, often heightens one's sense of happiness. It is therefore both surprising and important that people can be even happier after spending money on someone else. We conducted a close replication of a key experiment from Dunn, Aknin, and Norton (2008) to verify and expand upon their findings. Participants were given money and randomly assigned to either spend it on themselves or on someone else. Although the original study (N = 46) found that the latter group was happier, when we used the same analysis in our replication (N = 133), we did not observe a significant difference. However, we report an additional analysis, focused on a more direct measure of happiness, that does show a significant effect in the direction of the original. Follow-up analyses shed new insights into people's predictions about their own and others' happiness and their actual happiness when spending money for themselves or others.


Subject(s)
Emotions , Happiness , Humans , Pleasure
12.
Cell ; 185(13): 2201-2203, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35750028

ABSTRACT

The ε4 variant in the APOE gene is the strongest genetic risk factor for Alzheimer's disease. How does this gene impact different cell types in the brain to increase disease risk? In this issue of Cell, TCW and colleagues report APOE-driven cell-type-specific changes that may contribute to Alzheimer's disease risk.


Subject(s)
Alzheimer Disease , Apolipoprotein E4 , Apolipoproteins E/metabolism , Alzheimer Disease/genetics , Apolipoprotein E4/genetics , Brain , Humans , Risk Factors
13.
Anticancer Res ; 42(6): 2911-2921, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35641256

ABSTRACT

BACKGROUND/AIM: The B-raf proto-oncogene, serine/threonine kinase (BRAF) V600E mutation is frequent in patients with advanced melanoma. PLX4032, an inhibitor of BRAFV600E kinase, is effective for the treatment of melanoma in BRAF V600E-positive patients; however, resistance eventually develops due to paradoxical activation of the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinases (ERK) pathway resulting from RAF dimerization. In this study, we investigated the inhibitory effects of a novel imidazothiazole-based compound, KS28, on RAF dimerization and resistance to PLX4032 in melanoma. MATERIALS AND METHODS: The effects of KS28 were examined by immunoblotting, cell viability, terminal deoxynucleotidyl transferase dUTP nick-end labeling, reporter-gene, and soft-agar assays. RESULTS: KS28 treatment inhibited RAF dimerization in PLX4032-resistant A375 (A375R) cells, leading to suppression of the MEK/ERK pathway. In addition, KS28 reduced activator protein 1 transactivation in A375R cells, reduced cell viability, and increased DNA fragmentation. Moreover, treatment with KS28 suppressed anchorage-independent growth of A375R cells. Similarly, in an orthotopic tumor xenograft model, KS28 treatment suppressed the growth of tumors formed by A375R cells in BALB/c mice. CONCLUSION: KS28 plays a vital role in overcoming PLX4032 resistance in melanoma by down-regulating the MEK/ERK pathway.


Subject(s)
Drug Resistance, Neoplasm , Melanoma , Proto-Oncogene Proteins B-raf , Vemurafenib , Animals , Cell Line, Tumor , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Mice , Mice, Inbred BALB C , Mitogen-Activated Protein Kinase Kinases/metabolism , Protein Multimerization , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Vemurafenib/pharmacology , Xenograft Model Antitumor Assays
14.
Micromachines (Basel) ; 13(4)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35457814

ABSTRACT

A feedback field-effect transistor (FBFET) is a novel device that uses a positive feedback mechanism. FBFET has a high on-/off ratio and is expected to realize ideal switching characteristics through steep changes from off-state to on-state. In this paper, we propose and optimize FBFET devices with asymmetric source/drain doping concentrations. Additionally, we discuss the changes in electrical characteristics across various channel length and channel thickness conditions and compare them with those of FBFET with a symmetric source/drain. This shows that FBFET with an asymmetric source/drain has a higher on-/off ratio than FBFET with a symmetric source/drain.

15.
Nature ; 603(7899): 124-130, 2022 03.
Article in English | MEDLINE | ID: mdl-35197626

ABSTRACT

A hallmark pathological feature of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is the depletion of RNA-binding protein TDP-43 from the nucleus of neurons in the brain and spinal cord1. A major function of TDP-43 is as a repressor of cryptic exon inclusion during RNA splicing2-4. Single nucleotide polymorphisms in UNC13A are among the strongest hits associated with FTD and ALS in human genome-wide association studies5,6, but how those variants increase risk for disease is unknown. Here we show that TDP-43 represses a cryptic exon-splicing event in UNC13A. Loss of TDP-43 from the nucleus in human brain, neuronal cell lines and motor neurons derived from induced pluripotent stem cells resulted in the inclusion of a cryptic exon in UNC13A mRNA and reduced UNC13A protein expression. The top variants associated with FTD or ALS risk in humans are located in the intron harbouring the cryptic exon, and we show that they increase UNC13A cryptic exon splicing in the face of TDP-43 dysfunction. Together, our data provide a direct functional link between one of the strongest genetic risk factors for FTD and ALS (UNC13A genetic variants), and loss of TDP-43 function.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Amyotrophic Lateral Sclerosis/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Exons/genetics , Frontotemporal Dementia/metabolism , Genome-Wide Association Study , Humans , Motor Neurons/pathology , Nerve Tissue Proteins
16.
PLoS One ; 17(2): e0263466, 2022.
Article in English | MEDLINE | ID: mdl-35113970

ABSTRACT

Due to the prolonged COVID-19 pandemic, wearing masks has become essential for social interaction, disturbing emotion recognition in daily life. In the present study, a total of 39 Korean participants (female = 20, mean age = 24.2 years) inferred seven emotions (happiness, surprise, fear, sadness, disgust, anger, surprise, and neutral) from uncovered, mask-covered, sunglasses-covered faces. The recognition rates were the lowest under mask conditions, followed by the sunglasses and uncovered conditions. In identifying emotions, different emotion types were associated with different areas of the face. Specifically, the mouth was the most critical area for happiness, surprise, sadness, disgust, and anger recognition, but fear was most recognized from the eyes. By simultaneously comparing faces with different parts covered, we were able to more accurately examine the impact of different facial areas on emotion recognition. We discuss the potential cultural differences and the ways in which individuals can cope with communication in which facial expressions are paramount.


Subject(s)
COVID-19/epidemiology , COVID-19/psychology , Emotions , Eye Protective Devices , Facial Expression , Masks , Pandemics , Recognition, Psychology , SARS-CoV-2 , Adult , COVID-19/virology , Eye , Female , Humans , Male , Mouth , Republic of Korea/epidemiology , Sex Factors , Young Adult
17.
Front Vet Sci ; 9: 1080397, 2022.
Article in English | MEDLINE | ID: mdl-36713858

ABSTRACT

African swine fever (ASF), a highly contagious and severe hemorrhagic viral disease in swine, is emerging as a major threat not only in Korea but also worldwide. The first confirmed case of ASF in Korea was reported in 2019. Despite the occurrence of ASF in Korea, only a few studies have genetically characterized the causative ASF virus (ASFV). In this study, we aimed to genetically characterize the ASFV responsible for the 2019 outbreak in Korea. The genome of the ASFV isolated during the first outbreak in Korea was analyzed. The Korea/YC1/2019 strain has 188,950 base pairs, with a GC content of 38.4%. The complete genome sequence was compared with other ASFV genomes annotated in the NCBI database. The Korea/YC1/2019 strain shared the highest similarity with Georgia 2007, Belgium 2018/1, and ASFV-wbBS01 strains. This study expands our knowledge of the genetic diversity of ASFV, providing valuable information for epidemiology, diagnostics, therapies, and vaccine development.

18.
Cancer Lett ; 522: 44-56, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34530048

ABSTRACT

Acquired resistance often limits therapeutic efficacy of the BFAF (V600E) kinase inhibitor PLX4032 in patients with advanced melanoma. Epitranscriptomic modification of mRNAs by N6-methyladenosine (m6A) modification contributes to melanoma pathogenesis; however, its role in acquired PLX4032 resistance remains unexplored. Here, we showed that m6A methyltransferase METTL3 expression is upregulated in A375R cells, a PLX4032-resistant subline of A375 melanoma cells, compared with the parental cells. Moreover, METTL3 increased the m6A modification of epidermal growth factor receptor (EGFR) mRNA in A375R cells, which promoted its translation efficiency. In turn, increased EGFR expression facilitated rebound activation of the RAF/MEK/ERK pathway in A375R cells, inducing PLX4032 resistance. In contrast, knockout of METTL3 in A375R cells reduced EGFR expression and restored PLX4032 sensitivity. PLX4032 treatment following METTL3 knockout induced apoptosis and reduced colony formation in A375R cells and reduced A375R cell-derived tumor growth in BALB/c nude mice. These findings indicate that METTL3 promotes rebound activation of the RAF/MEK/ERK pathway through EGFR upregulation and highlight a critical role for METTL3-induced m6A modification in acquired PLX4032 resistance in melanoma, implicating METTL3 as a potential candidate for targeted chemotherapy.


Subject(s)
Melanoma/drug therapy , Methyltransferases/genetics , Proto-Oncogene Proteins B-raf/genetics , Adenosine/analogs & derivatives , Adenosine/genetics , Animals , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , ErbB Receptors/genetics , Gene Expression Regulation, Neoplastic/drug effects , Heterografts , Humans , MAP Kinase Signaling System/drug effects , Melanoma/genetics , Melanoma/pathology , Mice , Vemurafenib/adverse effects , Vemurafenib/pharmacology
19.
Sci Rep ; 11(1): 12717, 2021 06 16.
Article in English | MEDLINE | ID: mdl-34135433

ABSTRACT

This study aims to improve the efficiency of task switching in hospital laboratories. In a laboratory, several medical technicians perform multiple tasks. Technicians are not aware of the marginal amount of time it takes to switch between tasks, and this accumulation of lost minutes can cause the technician to worry more about the remaining working time than work quality. They rush through their remaining tasks, thereby rendering their work less efficient. For time optimization, we identified work changeover times to help maintain the work quality in the laboratory while reducing the number of task switching instances. We used the turnaround time (TAT) compliance rate of emergency room samples as an indicator to evaluate laboratory performance and the number of task switching instances as an index of the task performer perspective (TPP). We experimented with a monitoring system that populates the time for sample classification according to the optimal time for task switching. Through the proposed methodology, we successfully reduced not only the instances of task switching by 10% but also the TAT non-compliance rate from 4.97 to 2.66%. Consequently, the introduction of new methodology has greatly increased work efficiency.

20.
Cancers (Basel) ; 13(9)2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33946554

ABSTRACT

Phospholipids are crucial materials that are not only required for cell membrane construction but also play significant roles as signaling molecules. LPIN1 is an enzyme that displays phosphatidate phosphatase activity in the triglyceride and phospholipid synthesis pathway. Recent studies have shown that overexpression of LPIN1 is involved in breast tumorigenesis, but the underlying mechanism regulating LPIN1 expression has not been elucidated yet. In the present study, we showed that the IL-33-induced COT-JNK1/2 signaling pathway regulates LPIN1 mRNA and protein expression by recruiting c-Jun to the LPIN1 promoter in breast cancer cells. IL-33 dose-dependently and time-dependently increased LPIN1 mRNA and protein expression. Moreover, IL-33 promoted colony formation and mammary tumorigenesis via induction of LPIN1 expression, while inhibition of LPIN1 disturbed IL-33-induced cell proliferation and mammary tumorigenesis. IL-33-driven LPIN1 expression was mediated by the COT-JNK1/2 signaling pathway, and inhibition of COT or JNK1/2 reduced LPIN1 expression. COT-JNK1/2-mediated IL-33 signaling activated c-Jun and promoted its binding to the promoter region of LPIN1 to induce LPIN1 expression. These findings demonstrated the regulatory mechanism of LPIN1 transcription by the IL-33-induced COT/JNK1/2 pathway for the first time, providing a potential mechanism underlying the upregulation of LPIN1 in cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...